Friday, February 1, 2013

Taf's translation to O'Caml for type-checking

Taf is my new vapor-Lisp with row polymorphism, delimited continuations, and hygienic macros.

(Warning: incoherent rambling ahead!) Taf has a class-based object system with no inheritance. A class defines which slots an instance of this class has, and which methods are applicable to it. Every class also implicitly defines a class type. In addition to class types, there are also interface types or simply interfaces. An interface type defines a suite of methods applicable to objects of this type. Everything is an object of a single class, but may have many compatible class types and interface types. Every object is a member of a special top type. There is no implicit subtyping: objects need to be upcast to top.

All Taf objects are encoded as O'Caml objects. There is one O'Caml class for each Taf class. All classes inherit from a top class. Interfaces (method suites) are also defined as O'Caml classes. Any object can be statically upcast to top or any of the interfaces it implements. This is structural: an object can be upcast to an interface if it has all its methods. Objects have full RTTI, so they can also be dynamically downcast, resulting in an exception if the object is not of the given type. (A more convenient TYPECASE is provided as a wrapper.) Internally, downcasting is implemented via Obj.magic on the O'Caml side, and via a dynamic type-check in the VM. So Taf supports for example heterogenous containers containing arbitrary instances of top or of any other type. Any object can be put into the container, and taken out again, and cast back to its original class type. Likewise, it's possible to write methods that operate on objects of arbitrary types, such as Java's EQUALS. Types are parametric.

Another aspect is the semantics of the global environment. O'Caml's is basically that of a LET* for values, and LETREC only for groups of functions. But Lisp requires LETREC* for all values. So every binding must be encoded as a reference cell containing a Maybe on the O'Caml side, to model bindings which may be undefined.

The runtime, and also the code that produces O'Caml code will run in the browser. Eventually, the type-checker will be implemented in the language itself, so O'Caml will no longer be needed.

Update: here's a sneak preview of the Taf Language Manual.

1 comment:

Arti said...

What are your thoughts/opinions on Shen (formerly Qi)?